Mecánica cuántica
El Cerebro
Nuestro cerebro tiene efectos cuanticos, en el funcionamiento de las neuronas
El cerebro humano es el centro del sistema nervioso, es un órgano muy complejo y realiza complejas e importantes funciones. Encerrado en el cráneo, tiene la misma estructura general que los cerebros de otros mamíferos, pero es más de tres veces mayor que el cerebro de otros mamíferos con un tamaño corporal equivalente. La mayor parte la constituye la corteza cerebral, una capa de tejido neuronal plegado que cubre la superficie del pros encéfalo. Especialmente amplios son los lóbulos frontales, que están asociados con funciones ejecutivas, tales como el auto-control, la planificación, el razonamiento y el pensamiento abstracto. La parte del cerebro asociada a la visión está también muy agrandada en los seres humanos.


El cerebro humano realiza una gran cantidad de funciones
de manera general se puede afirmar que se encarga tanto de regular y mantener las funciones del cuerpo como de ser el órgano donde reside la mente y la conciencia del individuo.
En la complejidad del cerebro encierra un componente diminuto y extremadamente importante como son las neuronas
NEURONA
Neurona es el nombre que se da a la célula nerviosa y a todas sus prolongaciones. Mide en término medio entre 4-125 micras.
Son células muy excitables, especializadas para la recepción de estímulos y la conducción del impulso nervioso. Su tamaño y forma varían considerablemente.
Cada una posee un cuerpo celular desde cuya superficie se proyectan una o más prolongaciones denominadas neuritas. Las neuritas responsables de recibir información y conducirla hacia el cuerpo celular se denominan dendritas. La neurita larga única que conduce impulsos desde el cuerpo celular hacia la periferia se denomina axón.
Ultraestructura Funcional de la Neurona:
Soma: Sintetiza Neurotransmisores y diferente tipo de moléculas.
Dendritas: Son las principales áreas receptoras de impulsos a través de apéndices denominados espinas.
Axón o neurita: Es la prolongación mas voluminosa y conduce el impulsos nervioso en sentido celulífugo
Cono Axónico: Inicia el Impulso Nervioso (carece de RER)

Somas o Pericarion
Los somas forman la sustancia gris, junto a las prolongaciones amielínicas, abundantes células de glia y por sobre todo por abundantes capilares (que le da el color característico). Los capilares forman una red capilar en el soma neuronal y prolongaciones a objeto de transportar los nutrientes para el metabolismo aeróbico, principalmente oxígeno y glucosa.
Están formados por las siguientes estructuras:
Núcleo: Por lo común se encuentra en el centro del cuerpo celular, es grande, redondeado, pálido y contiene finos gránulos de cromatina (DNA y proteínas) muy dispersos. Contiene el nucleolo (RNA y proteínas) y está rodeado por la membrana nuclear de doble pared y con poros que probablemente solo se abren temporalmente.

Núcleo: Por lo común se encuentra en el centro del cuerpo celular, es grande, redondeado, pálido y contiene finos gránulos de cromatina (DNA y proteínas) muy dispersos. Contiene el nucleolo (RNA y proteínas) y está rodeado por la membrana nuclear de doble pared y con poros que probablemente solo se abren temporalmente.

Citoplasma
Contiene los cuerpos o sustancia de Nissl que forman parte del retículo endoplásmico rugoso

Sustancia de Nissl
Corresponde a gránulos de RER que se distribuyen en todo el citoplasma del cuerpo celular excepto en el punto donde se origina el axón (cono axónico). Le da el aspecto “atigrado” o piel de tigre al citoplasma.
Es responsable de la síntesis de proteínas, las cuales fluyen a lo largo de las dendritas y el axón y reemplazan a las proteínas que se destruyen durante la actividad celular, como también , los neurotransmisores
La fatiga o lesión neuronal ocasiona que la sustancia de Nissl se movilice y concentre en la periferia del citoplasma. Esto se conoce con el nombre de cromatólisis.

Aparato de Golgi
Las proteínas producidas por el retículo endoplásmico rugoso son transferidas al aparato de Golgi donde se almacenan transitoriamente en estas cisternas donde se le pueden agregar hidratos de carbono. Las macromoléculas pueden ser empaquetadas para su transporte hasta las terminaciones nerviosas. También participa en la producción de lisosomas y en la síntesis de las membranas celulares.

Mitocondrias
Se encuentran dispersas en todo el cuerpo celular, las dendritas y el axón. Poseen muchas enzimas que forman parte del ciclo de la respiración, por lo tanto son muy importantes para producir energía.

Neurofibrillas
Con microscopio electrónico se ven como haces de microfilamentos Contienen actina y miosina, es probable que ayuden al transporte celular. Forman parte del citoesqueleto celular

Microtúbulos
Se encuentran entremezclados con los microfilamentos. Se extienden por todo el cuerpo celular y el axon donde forman paquetes de disposión paralela con las microfibrillas. Se cree que la función de los microtúbulos y de las neurofibrillas es el transporte de sustancias desde el cuerpo celular hacia los extremos dístales de las prolongaciones celulares..jpg)
Lisosomas
Son vesículas limitadas por una membrana de alrededor de 8 nm de diámetro. Actúan como limpiadores intracelulares y contienen enzimas hidrolíticas.

Centríolos
Son pequeñas estructuras pares que se hallan en las células inmaduras en proceso de división. También se hallan centríolos en las células maduras, en las cuáles se cree que intervienen en el mantenimiento de los microtúbulos.
Lipofusina
Se presenta como gránulos pardo amarillentos dentro del citoplasma. Se estima que se forman como resultado de la actividad lisosomal y representan un subproducto metabólico. Se acumula con la edad.
Melanina
Los gránulos de melanina se encuentran en el citoplasma de las células en ciertas partes del encéfalo, por ejemplo, en la sustancia negra del encéfalo. Su presencia está relacionada con la capacidad para sintetizar catecolaminas por parte de aquellas neuronas cuyo neurotransmisor es la dopamina.
Dendritas

Son prolongaciones que salen del soma y tienen una estructura similar a la del citoplasma. Es el área receptora principal, es corta y contiene cuerpos o grumos de Nissl. Aumentan considerablemente la superficie de contacto de la neurona a través de sus ramificaciones y espinas dendríticas las cuales le dan una apariencia rugosa.
Su conducción de impulsos es de tipo celulípeta.
Axón

Su conducción de impulsos es de tipo celulífuga.
Dependiendo del número de prolongaciones se pueden distinguir neuronas unipolares,bipolares y multipolares
En su estructura se observa un flujo se sustancias, en su mayoría neurotransmisores sintetizados a nivel del soma neuronal y llevadas a las terminaciones axónicas y desde aquí vuelven al soma neuronal en un flujo continuo (flujo anterógrado como retrógrado).
Cuando el axón sale por el foramen intervertebral desde el interior del canal vertebral, se transforma en una fibra de un nervio periférico. La Fibra corresponde a un axón, cubierto por mielina y la vaina de Schwann o neurilema, encargada de formar la mielina (En el SNC, el oligodendrocito es la que produce la mielina). La mielina es interrumpida en intervalos(1-3mm) por profundas contricciones denominadas “nodos de ranvier” entre los cuales se ubica cada célula productora de mielina
Nervio Periférico

Por dentro del epineuro, están los paquetes de fibras envueltas por un tejido fibroso resistente formado por fibras colágenas y elásticas que es Perineuro; el cual es tan resistente, que si hay lesión del epineuro con conservación del perineuro, se conserva la función del nervio.
Dentro de cada fascículo de fibras nerviosas se encuentra otro tejido conectivo, que envuelve cada una de las fibras y se denomina Endoneuro.
Por debajo del endoneuro se encontrará la vaina de Schwann, la mielina y la fibra nerviosa. La vaina de mielina en el nervio periférico se forma por enrollamiento sucesivo de la célula de Schwann alrededor de la fibra nerviosa, y cada cierto tiempo va dejando espacios que se denominan Nodos de Ranvier, que permiten la conducción Saltatoria del impulso nervioso, lo que explica por qué la conducción es más rápida en un nervio con mielina ( EJ :fibra tipo alfa).
La disposición de los fascículos dentro de los nervios craneanos es distinta. Aquí se ve un solo paquete de fibras, no varios paquetes como el nervio periférico y se ha demostrado que los nervios craneanos son más resistentes al trauma que los periféricos.
.jpg)
SINAPSIS
La sinapsis o articulación interneuronal corresponde a las estructuras que permiten el paso del impulso nervioso desde una célula nerviosa a otra.
Sus componentes son los siguientes:
Superficie presináptica: Generalmente corresponde a una terminal axónica o botón axónico Con la membrana presináptica libre de neurotúbulos y neurofilamentos y donde se aprecian una serie de gránulos, abundantes mitocondrias que permiten el metabolismo aeróbico a este nivel y vesículas sinápticas llenas de neurotransmisor que es sintetizado en el soma y llega a la superficie presináptica a través del flujo axónico anterógrado. Las moléculas que no se liberan vuelven al soma a través del flujo retrógrado.
Espacio sináptico: Mide aprox. 200 Aº. Es el lugar donde se libera el neurotransmisor, el cual cae a la hendidura sináptica y baña la superficie del tercer componente de la sinapsis que es la superficie postsináptica.Tiene material filamentoso y se comunica con el espacio extracelular
Superficie Postsináptica: Es donde el neurotransmisor abre canales iónicos para que comiencen a funcionar los segundos mensajeros, dentro del cuerpo de la segunda neurona. Desencadenando un impulso nervioso.
NEUROTRASMISORES
Los Neurotransmisores son sustancias químicas sintetizadas en el pericarion y almacenadas en los terminales nerviosos en Vesículas Sinápticas. que permiten la transmisión de impulsos nerviosos a nivel de las sinapsis
Otto Loewi el año 1926:
- Aisló y perfundió los corazones de dos ranas controlando la frecuencia cardiaca.
- Estimuló eléctricamente el nervio vago fijado a un corazón, lo cual produjo una disminución de la frecuencia.
- Recogió el líquido que perfundía este corazón y lo transfirió al segundo corazón, disminuyendo en éste la frecuencia, sin haber sido estimulado eléctricamente.
- Con este experimento, dedujo que se había liberado alguna sustancia por la estimulación del nervio vago a partir del corazón estimulado. Denominó a esta sustancia “vagusstoff” y cinco años más tarde mostró que se trataba de la acetilcolina.
Criterios que definen a una sustancia como neurotransmisor:
La sustancia debe estar presente en el interior de la neurona presináptica.
- La sustancia debe ser liberada en respuesta a la despolarización presináptica, lo cual debe ocurrir en forma de Ca+2 dependiente.
- Se deben presentar receptores específicos en la célula postsináptica.
- Ciclo de vida similar:
- Sintetizadas y empaquetadas en vesículas en la neurona presináptica.
- Liberadas desde la célula presináptica, uniéndose a receptores sobre una o más células postsinápticas.
- Una vez liberadas en la hendidura son eliminadas o degradadas.
- Neuromoduladores actúan sobre la superficie para aumentar o disminuir la cantidad de neurotrasmisores que se liberan.
Aspectos Clínicos de Neurotrasmisores
Por ejemplo la Acetilcolina se libera en la placa motora. En la enfermedad llamada Miastenia, la cantidad de receptores de acetilcolina es muy baja (por problemas inmunológicos, el organismo destruye a los receptores de acetilcolina de la placa motora), por lo tanto, hay debilidad muscular. Para tratar esto, al paciente se le administra Neostigmina, un fármaco que destruye la acetilcolinesterasa (enzima que destruye a la acetilcolina liberada), aumentando en el tiempo el efecto de la acetilcolina liberada en los pocos receptores que quedan.
Además de los neurotransmisores, encontramos a los Neuromoduladores, que corresponden a sustancias que actúan sobre la superficie presináptica, para aumentar o disminuir la cantidad de neurotransmisor que se liberará. Como ejemplos de neuromoduladores tenemos a: encefalinas, endorfinas, Sustancia P, Colecistocinina, Vasopresina, Oxitocina, VIP (péptido intestinal vasoactivo).

- Las funciones anómalas de los neurotransmisores producen una amplia gama de enfermedades psiquiátricas y neurológicas.(Ej : Depresiones, enf. de Parkinson )
- Mejorar las acciones de los neurotransmisores mediante fármacos u otras medidas es fundamental para las terapéuticas modernas.
Tipos de Sinapsis, con relación a los Neurotransmisores:
Sinapsis Eléctrica (sin neurotransmisores)

En este tipo, las membranas sinápticas están conectadas directamente. a través de poros o túneles de proteina En ellas, el potencial de acción pasa a la neurona postsináptica sin Retardo ( gap junctions).Existen por ejemplo a nivel de loa sianpasis con llas células musculares lisas Son más abundantes en los animales filogenéticamente más primitivos que el hombre.
Sinapsis Electroquímicas

En este tipo, las membranas no están conectadas, dejan un espacio denominado Hendidura Sináptica.
Entonces La señal que conecta la Neurona Presináptica con una Postsináptica es un Neurotransmisor.
Neurotransmisores como:
Los neurotransmisores mas conocidos y mas comunes a nivel del sistema nervioso son: la acetilcolina (ACh), glutamato, ácido gammaaminobutítico (GABA) y glicina.
El neurotransmisor excitatorio mas conocido es el glutamato y los inhibitorios de sinapsis son GABA en el cerebro y la glicina en la médula espinal
Otros neurotransmisores son la norepinefrina (NE), la dopamina (DA) y la serotonina (5HT)
Neuromoduladores:
Encefalinas, Endorfinas, Sustancia P, Colecistoquinina, Vasopresina, Oxitocina, Péptidos Intestinales Vasoactivos (VIP).
Ahora hay que entender lo que encierra la Mecanica Cuantica y que comprende en el Cerebro
Si aun no comprendes lo que pasa en tu mente pues dale clid a la imagen y entenderas un poco mas


Psicologo Clinico Geovanny Martinez Rincon
Hola a todos


Si te gusto mi pagina, entra en mi Facebook y dale un me gusta a las publicaciones, esto me ayudara a seguir haciendo mas temas de tu interes sobre la psicologia y la ciencia.
Numeros de contactos: 0967950217-052797762correo: w.ilmermartinez2020@outlook.com